Строительное оборудование
Домой -  Конструкции 

Приборы для измерения температуры.

В СИ принята температурная шкала Кельвина, в которой температура отсчитывается от абсолютного нуля температур. Точка плавления льда по шкале Кельвина равна 273,15 К, точка кипения воды — 373,15 К. Так же как в шкале Цельсия, эти температуры отличаются на 100°, поэтому фактически единица шкалы Цельсия равна единице шкалы Кельвина. Пересчитывают температуры из одной шкалы в другую по формуле t °C= T К-273,1 При испытании строительных материалов применяют обычно шкалу Цельсия.

Общие сведения. Для измерения температуры в лабораториях строительных материалов применяют главным образом жидкостные термометры, реже манометрические, термоэлектрические и термометры сопротивления.

Жидкостные термометры представляют собой стеклянный резервуар с припаянным к нему стеклянным капилляром. Жидкость полностью заполняет резервуар и часть капилляра. При изменении температуры объем жидкости меняется, вследствие чего ее уровень в капилляре поднимается или опускается на величину, пропорциональную изменению температуры. Благодаря малому диаметру капилляра даже небольшое изменение объема жидкости заметно меняет ее уровень в капилляре.

Жидкостные термометры. Термометры, действие которых основано на тепловом расширении жидкости (ртути, спирта, пен-тана и др.), служат для измерения температур в интервале от -200 до +750 °С.

По конструкции жидкостные термометры бывают трех типов: палочные, с вложенной шкалой и с прикладной наружной шкалой.

В качестве термометрического вещества, заполняющего термометр, для измерения температур выше 30 °С чаще всего применяют ртуть, которая находится в жидком состоянии в большом интервале температур (от -39 до +357 °С). Для измерения температур ниже -30 °С обычно используют подкрашенный спирт.



Палочные термометры ( 2.8, а) — это массивные капиллярные трубки, на внешней поверхности которых нанесена шкала.

а палочный; б с вложенной шкалой; в с прикладной шкалой

2. Жидкостные термометры:

2. Технические стеклянные ртутные термометры:



У термометров с вложенной шкалой ( 2.8, б) внутри стеклянной оболочки заключена капиллярная трубка, а позади нее — шкальная пластина из непрозрачного стекла белого цвета. Шкальная пластина в нижней части опирается на сужение оболочки, а в верхней — припаяна к внутренней стороне оболочки. Пластина может быть закреплена и другим способом. Капиллярная трубка крепится к шкальной пластине тонкой проволокой из нержавеющего металла.

а — прямые; б — угловые

Отметки шкалы нанесены в виде штрихов, перпендикулярных оси капилляра. Цена деления шкалы термометра от 10 до 0,01 °С. Для удобства пользования и обеспечения высокой точности измерения термометры изготовляют с укороченной шкалой. Наиболее точные термометры имеют на шкале точку О °С независимо от нанесенного на ней температурного интервала.

Термометры с прикладной наружной шкалой ( 2.8, в) представляют собой массивную пластину из пластмассы, дерева или металла, с нанесенной на нее шкалой, к которой прикреплен капилляр с резервуаром. Чтобы предохранить жидкостные термометры от разрушения при случайном перегреве, в верхнем конце капилляра предусмотрено расширение (запасной резервуар) или выступающая за пределы градуированной шкалы часть капилляра, допускающая перегрев не менее чем на 20 СС.

По назначению жидкостные термометры бывают различных видов. В строительных лабораториях чаще всего применяют стеклянные лабораторные и технические ртутные термометры и жидкостные (нертутные) термометры.

Общий недостаток жидкостных термометров — значительная тепловая инерция и не всегда удобные для работы габариты.

Стеклянные ртутные термометры для точных измерений рассчитаны на узкие пределы измерений. Изготовляют их обычно палочными. В зависимости от точности измерений термометры выпускают четырех групп: 1, И, III, IV с ценой деления шкалы соответственно 0,01; 0,02; 0,05; 0,1 °С.

Стеклянные ртутные лабораторные термометры, применяемые для измерения температур в интервале от -30 до +500 °С, бывают палочные и с вложенной шкалой. Промышленность выпускает 30 видов лабораторных термометров с интервалом температур 100 и 50 °С и ценой деления шкалы от 2 до 0,1 °С.

Стеклянные жидкостные (нертутные) термометры служат для измерения температур в интервале от -200 до +200 °С. В качестве термометрической жидкости в них используют органические вещества: этиловый спирт, пропан, керосин и т. п. Жидкостные термометры выпускают палочные, с вложенной и прикладной шкалами.

Стеклянные технические термометры предназначены для измерения температур в интервале от -90 до 600 °С. По форме эти термометры ( 2.9) могут быть прямые (П) и угловые (У). В термометры вложена шкальная пластина, закрепляемая сверху пробкой. Промышленность выпускает 12 видов технических термометров, отличающихся пределами измерения. Термометры используют для измерения температуры в сушильных шкафах, термостатах, холодильных камерах и других установках. Для этого термометр погружают узкой нижней частью на требуемую глубину, а верхняя часть находится снаружи.

Для измерения температуры выбирают термометр с соответствующими пределами измерений. Например, температуру от 10 до 40 °С можно определить термометром с пределами измерений от 0 до 50 °С. При измерении температуры в тепловых приборах (сушильных шкафах, термостатах) верхний предел шкалы термометра должен превышать температуру, которая может быть создана в приборе. В противном случае расширяющаяся ртуть может разорвать капилляр, и термометр придет в негодность.

Правила пользования жидкостными термометрами. Термометры хранят в футлярах, избегая резких толчков и изменений температуры. Обязательные условия правильной работы жидкостных термометров — непрерывность и равномерность движения термометрической жидкости в капилляре. Она не должна оставлять следов на стенках капилляров и ее столбик не должен рваться.

Для наблюдения за температурой воздуха в помещении термометр помещают на внутренней стене или перегородке помещения так, чтобы на него не действовали прямые солнечные лучи, нагревательные или охлаждающие приборы. При измерении температуры воздуха термометр всегда должен быть сухим. Влажный термометр за счет испарения с его поверхности воды охлаждается и показывает меньшую температуру.

Отсчет по шкале термометра снимают в тот момент, когда прекращается перемещение столбика жидкости относительно шкалы. Термометр при считывании показаний нельзя извлекать из среды, в которой измеряется температура, так как его показания при этом изменяются.



Термоэлектрические термометры. Такие термометры включают в себя термоэлектрический преобразователь (термопару), преобразующий тепловую энергию в электрическую, и электроизмерительный прибор (милливольтметр, потенциометр).

1,2— горячий и холодным спаи термоэлемента; 3 — милливольтметр

2.1 Схема термоэлектрического термометра:

При измерении температуры термоэлектрическими термометрами, широко применяемыми в промышленности, можно вести автоматическую запись температуры с помощью электронного самописца (потенциометра); кроме того, ЭДС термоэлектрического преобразователя можно использовать для автоматического регулирования температуры. В лабораториях термоэлектрические термометры применяют для измерения и регулирования температуры в печах, в пропарочных и холодильных камерах.

Термоэлектрический преобразователь состоит из двух последовательно соединенных (спаянных) между собой разнородных электропроводящих элементов (металлов или полупроводников). Если спаи термоэлектрического преобразователя ( 2.10) имеют разные температуры (Г, Ф 7*2), то в цепи термоэлемента возникает термоэлектродвижущая сила (ЭДС), значение которой зависит от разности температур горячего и холодного спаев. Поэтому при постоянной температуре одного спая ЭДС может служить показателем температуры другого спая. ЭДС термоэлектрических преобразователей невелика и составляет несколько милливольт. Линейная (или близкая к ней) зависимость ЭДС от разности температур спаев позволяет выполнять шкалу электроизмерительного прибора, применяемого в комплекте с ним, не в милливольтах, а непосредственно в градусах. Точность измерения температуры термоэлектрическим термометром зависит от постоянства температуры холодного спая во время измерений. Поэтому холодный спай помещают в тающий лед, имеющий стабильную температуру О °С.

Для изоляции проводников термопары применяют фарфоровые трубки (соломку) или бусы, которые должны сохранять свои изоляционные свойства при высоких температурах. Промышленные термопары защищены от вредного воздействия внешней среды керамическими или металлическими (при температурах ниже 1000 °С) чехлами.

Для термоэлектрических термометров применяют термоэлектрические преобразователи (термопары) из различных металлов с определенными градуировочными характеристиками.



Термометры сопротивления. Действия этих приборов основаны на изменении электрического сопротивления металлов, сплавов и полупроводников при изменении температуры. Чаще всего применяют платиновые термометры, позволяющие измерять температуру в пределах от -260 до +1060 °С; для более узкого интервала температур (от -50 до +180°С) используют медные термометры сопротивления.

1 каркас; 2 — обмотка: 3 — зашит-пач оболочка; 4— мыиодмые концы

2.1 Термометр сопротивления:

2.1 Схема манометрического термометра:



Термометры сопротивления ( 2.11) выполнены в виде каркаса из фарфора, кварца или слюды с обмоткой из платиновой, медной или какой-либо другой проволоки диаметром 0,05 0,2 мм, закрытой фарфоровой, стеклянной или металлической оболочкой термометры сопротивления так же, как и термоэлектрические, самостоятельно не применяют — их используют в комплекте со вторичными измерительными устройствами, для подключения к которым термометр снабжен выводными концами.

1 термометрический баллон; 2 капилляр; 3- пружина; 4 — шкала



Манометрические термометры. Действие этих термометров основано на изменении давления газа в замкнутом объеме при изменении его температуры. При помещении термометрического баллона манометрического термометра ( 2.12) в измеряемую среду давление газа в баллоне меняется. Соответственно оно меняется и в полой манометрической пружине, сообщающейся с баллоном капилляром. При этом пружина закручивается или раскручивается, двигая стрелку вдоль температурной шкалы.


Расчет балок и плит на упругом линейно деформируемом полупространстве. Расчет и проектирование насосных станций и напорных водоводов. Расчет и проектирование водоотводящих сетей. Расчет свай на совместные действия вертикальных и горизонтальных нагрузок и моментов. Расчистка и планировка территории. Оптимизирующие факторы при совершенствовании технологий до уровня прогрессивных. Разборка и ликвидация зданий и сооружений. Разновидности бань и саун. Развитие "ясновидения" в строительстве.

Домой -  Конструкции  Вывоз мусора: www.lugr.ru, кузовные запчасти для иномарок
 
Сайт управляется системой uCoz